• Развитие нервной системы животных. Как появилась нервная система Первая нервная система появилась у

    второе высшее образование "психология" в формате MBA

    предмет: Анатомия и эволюция нервной системы человека.

    Методичка "Анатомия центральной нервной системы"

    1) Введение
    2)


    Введение


    Курс «Анатомия центральной нервной системы» предназначен для создания у студентов необходимой основы последующего изучения психологии. В результате его освоения будущие психологи должны четко уяснить неразрывную взаимосвязь структуры и функции, а также знать основные морфологические субстраты, ответственные за проявление психологических явлений. Таким образом, основная задача курса «Анатомия центральной нервной системы» — это формирование целостного представления о строении материальной основы психики — центральной нервной системы.

    При написании данного курса авторы применяли несколько подходов: эволюционный, морфофизиологический и интегративный. Первый подход рассматривает мозг человека как продукт двоякого развития — в филогенезе и онтогенезе, причем оба эти процесса связаны воедино в биогенетическом законе. Эволюционный подход способствует созданию естественнонаучной основы для формирования у студентов целостного мировоззрения, которое позволяет понять феномены специфического поведения людей в обществе.

    Морфофизиологический подход предполагает достаточно четкую детерминированную связь между нервными структурами и психическими функциями, за которые эти структуры отвечают, причем это касается не только таких простейших психических явлений, какими являются ощущения, но и более сложных психических феноменов: памяти, мышления и речи.

    Третьим методическим приемом в этой работе является интегративный подход, показывающий организацию человека в виде сложной, иерархически устроенной, саморегулирующейся системы, которая обладает большими адаптационными возможностями благодаря накоплению повой информации центральной нервной системой. Изложение материала этого курса строится по принципу целостности и иерархичности нервной системы, начиная с клеточного уровня и завершая наиболее сложным этажом центральной нервной системы — корой больших полушарий, которая является материальным субстратом психики человека. Учебно-методический комплекс составлен на основе требований Государственного образовательного стандарта высшего профессионального образования. Студент, изучивший курс «Анатомия центральной нервной системы», должен иметь:

    1) общее представление о:
    . процессах филогенеза и онтогенеза центральной нервной системы человека на основе эволюционного подхода;
    . методах, которые используются для изучения анатомии человека на всех уровнях — от микроскопического до макроскопического;
    . микроструктуре нервной ткани и строении нервных клеток;
    . функциях основных нервных центров головного мозга;
    2) конкретные знания:
    . структурной организации спинного мозга;
    . основных отделов головного мозга;
    . основных проводящих путей центральной нервной системы;
    . черепно-мозговых нервов;
    . сравнительной структурной организации соматической и вегетативной нервной системы;
    3) умения:
    . находить различные анатомические структуры на изображениях срезов головного мозга в анатомическом атласе;
    . самому схематично нарисовать основные срезы головного мозга;
    . указать порядок расположения черепных нервов;
    . изобразить схему организации спинального соматического и вегетативного рефлекса.


    Развитие ЦНС в фило- и онтогенезе


    3.1. Филогенез центральной нервной системы


    Под филогенезом (греч. рhylon — род, племя + genesis — зарождение, происхождение) понимается процесс исторического развития живой природы, отдельных групп организмов или органов и систем. Научной основой представлений о филогенезе является эволюционная теория. Схематически филогенез животных изображают в виде «филогенетического древа», отражающего пути эволюции организмов и родственные связи между ними (ствол соответствует примитивным формам организмов, ветви — всем последующим формам).

    Впервые нервная система появляется у кишечнополостных животных. Нервная система кишечнополостных является диффузной , т. е. у них отсутствуют выраженные скопления нервных клеток, образующих более-менее равномерную сеть. Такая нервная система может организовывать только простые движения — например, гидра сжимается в комочек, если к ней прикоснуться иголкой. У медуз, в связи с их подвижным образом жизни, ожилась более совершенная нервная система: имеется скопление нервных клеток в виде кольца по краю зонтика. Также у медуз есть отолитовый аппарат (орган равновесия) и имеется функциональное разделение нейронов на две группы, отвечающие за плавательную и пищевую активность. Например, у медузы Аurelia под покровным эпителием находится сеть из мультиполярных нейронов, связанная с сенсорными клетками на поверхности и управляющая движениями при захвате пищи. Независимо от нее функционирует вторая нервная сеть, биполярные нейроны которой связаны с кольцевой и радиальной мускулатурой и вызывают ее ритмические сокращения при плавании.

    У более высокоорганизованных животных нервные клетки располагаются более тесно друг к другу, образуя нервные узлы. Благодаря синаптическим контактам нервных клеток, образующих узлы, в них становится возможна обработка поступающей информации и выработка команд, поступающих к рабочим органам: железам и мышцам.

    У плоских червей возникает билатеральная симметрия, соответственно, у них дифференцируется головной и хвостовой конец тела. К головному концу смещаются нервные элементы и органы чувств: тактильные рецепторы и хсморецепторы, а у свободноживущих червей — и световые рецепторы. Внешне нервная система этих животных напоминает лестницу: имеется несколько крупных ганглиев в головном конце тела и два (или больше) нервных ствола, соединенных друг с другом перемычками. Такая нервная система относится к лестничному типу.

    У кольчатых червей обнаруживается симметричное строение тела и нервной системы, которая представлена двумя цепочками узлов, состоящих из нервных клеток и нервных волокон. У них впервые в процессе эволюции появляется нервная система узлового типа. В брюшной области узлы одной стороны соединяются с узлами другой стороны каждого сегмента, таким образом образуются своеобразные автономные «микропроцессоры», управляющие органами одного сегмента. Такое строение нервной системы обеспечивает высокую надежность жизнедеятельности кольчатых червей, что позволяет им сохранять жизнь даже при расчленении тела червя на несколько частей. Мощный надглоточный узел, соединенный с подглоточным узлом, а через него и с брюшными узлами, свидетельствует о зарождении центральной нервной системы у этих животных.

    Узловая нервная система в процессе эволюции получила дальнейшее развитие у моллюсков и членистоногих. У моллюсков тело напоминает мышечный мешок, в котором обнаруживается нервных волокон, берущих начало от трех пар узлов. Цельные узлы являются сложным аппаратом и достигают наивысшего развития у головоногих моллюсков (кальмаров, осьминогов). Нервная система членистоногих (особенно насекомых) развивалась в направлении усложнения и усовершенствования различных функций. У некоторых видов насекомых (перепончатокрылых) не только нервная система, но и органы чувств достигают вершины развития среди беспозвоночных животных. Таким образом, нервная системау беспозвоночных способна не только обеспечивать различной сложности безусловно-рефлекторные двигательные акты, но и являться основой для некоторых форм научения.

    У хордовых животных появляется «трубчатая» нервная система , образованная клетками эктодермы, которые формируют медуллярную трубку. Первоначально (у ланцетника) она не разделялась на головной и спинной мозг, но уже у круглоротых рыб это деление отмечается вполне отчетливо. Но мере эволюционного развития головной мозг все больше развивался, а внутри самого головного мозга все большее развитие получали отделы переднего мозга. Выход на сушу дал новый толчок и к развитию органов чувств, и к совершенствованию нервной системы у земноводных, а у рептилий впервые появляется кора конечного мозга. У птиц кора конечного мозга развита еще слабо, однако значительных размеров достигает полосатое тело, являющееся материальной основой высших форм нервной деятельности птиц. Наивысшего развития кора головного мозга и сам мозг получают у млекопитающих. Основное направление эволюции ЦНС этого класса заключается в усложнении межнейройных связей и увеличении количества нейронов. Наиболее сложные связи формируются в коре больших полушарий, которая, в свою очередь, дифференцируется по выполняемым функциям.

    3.2. Онтогенез центральной нервной системы

    Онтогенез (оntogenesis; греч. оп, ontos — сущее + genesis — зарождение, происхождение) — процесс индивидуального развития организма от момента его зарождения (зачатия) до смерти. В основе онтогенеза лежит цепь строго определенных последовательных биохимических, физиологических и морфологических изменений, специфичных для каждого из периодов индивидуального развития организма конкретного вида. В соответствии с этими изменениями выделяют:
    эмбриональный (зародышевый, или пренатальный) - время от оплодотворения до рождения
    постэмбриональный (послезародышевый, или постнатальный) периоды - от рождения до смерти:

    Развитие ЦНС человека (по Ф.Булум А. Луйзерсонин и Л. Хофстендер, 1988):

    Согласно биогенетическому закону, в онтогенезе нервная система повторяет этапы филогенеза. Вначале происходит диффереицировка зародышевых листков, затем из клеток эктодермалыюго зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются — образуется медуллярная трубка:

    Образование нервной трубки из эктодермы:

    В дальнейшем из задней ее части, отстающей в росте, образуется спинной мозг, из передней, развивающейся более интенсивно, — головной мозг. Канал медуллярной трубки превращается в центральный канал спинного мозга и желудочки головного мозга.

    Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека. Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев (нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой — ганглиозную пластинку. Последняя служит исходным материалом для клеток чувствительных нервных узлов (сигнальных и краниальных) и узлов вегетативной нервной системы, иннервирующей внутренние органы.

    Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается. В этой стадии развития в ней можно выделить три слоя: внутренний эпендимный слой, характеризующийся активным митотическим делением клеток; средний слой - мантийный (плащевой), клеточный состав которого пополняется как за счет митотического деления клеток этого слоя, так и путем перемещения их из внутреннего эпендимного слоя; наружный слой, называемый краевой вуалью. Последний слой образуется отростками клеток двух предыдущих слоев. В дальнейшем клетки внутреннего слоя превращаются в эпендимоциты, выстилающие центральный канал спинного мозга. Клеточные элементы мантийного слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть — в глиальные клетки:

    Схема дифференцировки нервной системы человека :

    Вследствие интенсивного развития передней части медуллярной трубки образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. Образовавшиеся три пузыря дают начало переднему, среднему и ромбовидному мозгу. Впоследствии из переднего пузыря развиваются два пузыря, дающие начало конечному и промежуточному мозгу. А задний пузырь, в свою очередь, делится на два пузыря, из которых образуется задний мозг и продолговатый, или добавочный, мозг.

    Таким образом, в результате деления нервной трубки и образования пяти мозговых пузырей с последующим их развитием формируются следующие отделы нервной системы:
    передний мозг, состоящий из конечного и промежуточного мозга;
    ствол мозга, включающий в себя ромбовидный и средний мозг.

    Конечный, или большой, мозг представлен двумя полушариями (в него входят кора большого мозга, белое вещество, обонятельный мозг, базальные ядра).
    К промежуточному мозгу относят эпиталамус, передний и задний тадамус, метапамус, гипоталамус.
    Ромбовидный мозг состоит из продолговатого мозга и заднего, включающего в себя мост и мозжечок, средний мозг — из ножек мозга, покрышки и крышки среднего мозга. Из недифференцированной части медуллярной трубки развивается спинной мозг.
    Полость конечного мозга образуют боковые желудочки, полость промежуточного мозга — III желудочек, среднего мозга - водопровод среднего мозга (сильвиев водопровод), ромбовидного мозга — IV желудочек и спинного мозга — центральный канал.

    В дальнейшем идет быстрое развитие всей центральной нервной системы, но наиболее активно развивается конечный мозг, который начинает делиться продольной щелью большого мозга на два полушария. Затем на поверхности каждого из них появляются борозды, определяющие будущие доли и извилины.

    На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м — центральная борозда и другие главные борозды, в последующие месяцы — второстепенные и после рождения — самые мелкие борозды.

    В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов. К концу 4-го месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствуются о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем — на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Формирование функции и также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия.

    В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела — коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни. Еще один важный этап в онтогенезе это период полового созревания, когда проходит и половая дифференцировка мозга.

    В течение всей жизни человека мозг активно изменяется, приспосабливаясь к условиям внешней и внутренней среды, часть этих изменений носит генетически запрограммированный характер, часть является относительно свободной реакцией на условия существования. Онтогенез нервноной системы заканчивается только со смертью человека.

    Появление и развитие нервной системы у животных обеспечило выполнение двух основных функций:

    Проведение раздражения из точки А в точку Б организма,

    Интеграции поведения (организм функционирует как целое).

    Впервые нервная система появляется у кишечнополостных. Далее в своем развитии она проходит несколько этапов. Первоначальным, наиболее примитивным типом нервной системы является диффузная нервная система. Для данного типа нервной системы характерен недифференцированный способ реагирования на раздражение: реакции организма не зависят от характера, интенсивности раздражения (или зависят очень слабо). На сегодняшний день этот способ реагирования, например, встречается у медузы.

    На следующем этапе развития нервной системы наблюдается уже процесс централизации нервной системы (у червей). Процесс эволюции дальше идет уже по двум расходящимся, независимым линиям:

    К высшим беспозвоночным,

    К позвоночным.

    Уже на ранних этапах эволюции происходит образование узлов в нервной системе. Узлы из нервных клеток обеспечивают образование более сложных и скорых реакций на изменения в окружающей среде. Этот тип нервной системы отчетливо представлен у кольчатых червей.

    Но уже у самих червей начинает выделяться головной узел, приобретающий господствующее, доминирующее значение. У животных, обладающих узловой нервной системой, впервые появляется реакция, имеющая характер рефлекса.

    У высших беспозвоночных (членистоногих - пчел, муравьев) головной мозг приобретает уже весьма сложное строение. В нем дифференцируются отдельные части (так называемые грибовидные тельца), в которых происходят довольно сложные процессы переключения. Мозг - как основной нервный узел - настолько усложняется, что включает в себя как бы другие, подузлы. Такая относительно сложная организация нервной системы обеспечивает довольно сложные формы поведения и психической деятельности. Хотя поведение и носит почти исключительно инстинктивный характер, тем не менее стороннему наблюдателю может даже показаться, что насекомые обладают зачатками разума.

    В развитии нервной системы беспозвоночных (как и позвоночных тоже) прослеживаются следующие три прогрессирующие тенденции:

    Централизация,

    Цефализация,

    Иерархизация,

    Специализация.

    Централизация нервной системы - сосредоточение нервных элементов в определенных местах, образование ганглиев, в которых скапливается, централизуется множество ганглиозных нервных клеток. Цефализация нервной системы - преимущественное сосредоточение нервных клеток на головном конце тела. Иерархизация нервной системы - подчинение одних участков или частей нервной системы другим.

    Если у животных с самой примитивной нервной системой наблюдается диффузная реакция (иногда называемая массовое действие - mass action), то затем появляется специализация реакций: выделяются местные специализированные реакции отдельных частей тела. Если представить диффузную реакцию нервной системы современного человека, то будет, видимо, что-то вроде эпилептического припадка. Развитая специализация обеспечивает высокий уровень приспособления животного к окружающей среде. Кстати говоря, наличие разного рода орудий труда, инструментов в руках современного человека обеспечивает почти бесконечные возможности для взаимодействия с природой. Также специализация, очевидно, обеспечивает сохранение энергии, что тоже очень важно.

    Если сравнивать развитие нервной системы у высших беспозвоночных и позвоночных животных, то перечисленные тенденции приобретают еще более глубокое и специфическое значение во втором случае.

    У позвоночных наблюдается резкая дифференциация нервной системы на периферическую и центральную. И прогресс в развитии позвоночных осуществляется главным образом за счет развития именно центральной нервной системы. При этом наиболее существенным в развитии центральной нервной системы является эволюция строения и функций головного мозга. В головном мозге позвоночных дифференцируется мозговой ствол и большие полушария. Большие полушария развиваются в процессе эволюции из конечного мозга.

    Наиболее характерным и знаковым для развития мозга млекопитающих является появление коры - неокортекса. Для приматов, и особенно для человека, кора занимает господствующее положение в иерархии.

    Энцефализация у позвоночных принимает новый характер: нервные функции не просто передаются в головной мозг, но еще и кортикализуются (то есть передаются в кору). С перемещением функционального управления вообще связано и перемещение психических функций. Они в ходе развития перемещаются к передним высшим отделам нервной системы. Функция зрения, связанная сначала со зрительной долей среднего мозга, перемещается в наружное коленчатое тело (подкорка) и в затылочную долю большого мозга. Функция слуха перемещается из слухового бугорка продолговатого мозга и заднего четверохолмия во внутреннее коленчатое тело (подкорка) и в височную долю полушарий.

    Кортикализация функций заключается именно в переходе функционального управления и специально психических функций по направлению к коре - высшему в иерархии отделу нервной системы.

    Большое значение для эволюции нервной системы имело появление и развитие дистантрецепторов, то есть тех рецепторов, которые действуют на расстоянии. Непосредственно дистантрецепторы воспринимают звуковые и световые волны, и по ним уже распознается источник этих волн. Дистантрецепторы не возникли сразу, они выдифференцировавшихся из контактрецепторов, непосредственно чувствующих объект. Предпосылкой для эволюции контактрецепторов в дистантрецепторы стало постепенно снижение порогов чувствительности первых (то есть повышение чувствительности). Так, например, тактильная чувствительность преобразовалась в слуховую через обретение способности чувствовать колебания. Современный человек, кстати, не лишен этой способности: кожей ощущать низкочастотные колебания.

    Развитие дистантных рецепторов сильно увеличило возможность отображения действительности, создало предпосылку для развития более совершенно организованных форм поведения. Сильно развилось восприятие, оно теперь получило способность к глубокому, трехмерному наблюдению и пониманию пространства. Вместе с таким развитием восприятия кардинально изменилось построение движений.

    Впервые нервные клетки появляются у кишечнополостных. Они образуют в эктодерме примитивную диффузную нервную систему рассеянное нервное сплетение или нервную сеть. В энтодерме есть отдельные нервные клетки. Наличие нервной системы позволяет гидре осуществлять простые рефлексы. Гидра реагирует на механическое раздражение, температуру, наличие в воде химических веществ и на ряд других факторов внешней среды.




    Решётчатая нервная система У плоских червей нервная система образована двумя нервными стволами, соединёнными между собой тяжами. Скопления нервных клеток в головном отделе образуют парные головные нервные узлы. От нервных стволов отходят нервные ответвления к кожным покровам и системам органов. У круглых червей уже встречается окологлоточное нервное кольцо, образуемое за счет слияния головных нервных узлов.


    У кольчатых червей развивается нервная цепочка за счет образования парных нервных узлов (ганглиев) в сегментах тела. В головном отделе червя располагаются два больших ганглия соединённых друг с другом кольцевыми перемычками, образующими окологлоточное нервное кольцо.




    У членистоногих отмечается дальнейшая концентрация нервных клеток, в результате чего обособляются нервные центры, развиваются органы чувств. Общий план её организации соответствует брюшной нервной цепочке, однако имеется ряд особенностей: У сенокосцев и клещей все нервные узлы сливаются, образуя кольцо вокруг пищевода, однако у скорпионов сохраняется хорошо выраженная брюшная нервная цепочка. 1a - надглоточный нервный узел; 1b - подглоточный нервный узел; 2 - грудные нервные узлы; 3 - брюшная нервная цепочка. 1a 1b3 1a




    У позвоночных нервная система представлена: Нервная система Центральная нервная система Головной мозг Спинной мозг Периферическая нервная система Нервы Спинной мозг принимает участие в двигательных и вегетативных рефлексах таких как пищевые, дыхательные, мочеиспускания, половые и т.д. Рефлекторная функция спинного мозга находится под контролем головного мозга.


    Головной мозг рыб защищён костями черепа и состоит из пяти отделов: переднего мозга, промежуточного мозга, среднего мозга, мозжечка и продолговатого мозга. По сравнению с ланцетником и круглоротыми, у рыб развиваются органы чувств: глаза, органы обоняния, внутреннее ухо, боковая линия и т.д., что позволяет рыбам хорошо ориентироваться в окружающей среде.


    У земноводных в связи с выходом на сушу нервная система характеризуется более сложным строением по сравнению с рыбами, в частности, большим развитием и полным разделением мозга на полушария. Более совершенное зрение. Наряду с внутренним ухом, развитым у рыб, у них появляется среднее ухо. Большего развития достигает орган обоняния. Передний мозг Средний мозг Мозжечок Промежуточный мозг Продолговатый мозг РыбаАмфибия


    У рептилий особенностью нервной системы является прогрессивное развитие всех отделов головного мозга, характерное для наземных животных. В частности, значительно увеличены полушария мозга. На поверхности полушарий впервые появляется кора, увеличивается мозжечок. Еще в большей мере развиваются органы чувств. Продолговатый мозг Средний мозг Мозжечок Промежуточный мозг РептилияАмфибия Передний мозг










    Эволюция нервной системы позвоночных 1.Головной мозг; 2.Спинной мозг; 3.Нервы.


    В которой наиболее сложными являются органы зрения и слуха. В ходе эволюции зрение впервые появляется у членистоногих. У них оно представлено парой сложных фасеточных глаз, разделенных на Насекомые близоруки область точного зрения у них не превышает 12 см. Зато они отлично видят движение и цвет, в том числе ультрафиолет. Высокого уровня достигает развитие сенсорной системы, У насекомых клетки, воспринимающие запах, расположены преимущественно на усиках. Каждый усик может двигаться, так что запах насекомые воспринимают вместе с пространством и направлением, для них это одно единое чувство - объемный запах. простые глазки, каждый из которых может различать лишь часть объекта. Насекомые обладают цветовым и объемным зрением.


    Дальнейшее совершенствование органа зрения характерно для рыб и земноводных. У рептилий уже отмечается возможность изменения кривизны хрусталика, что ведет к улучшению зрения. Важной особенностью зрения птиц является то, что сетчатка глаза способна улавливать не только цветовую модель, состоящую из красного, зелёного и синего цветов, но также лучи ближнего ультрафиолета. Веки неподвижны, мигание осуществляется с помощью особой перепонки - «третьего века». У многих водных птиц перепонка полностью закрывает глаза и под водой выполняет функцию контактной линзы. Глаз птицы


    В отличие от птиц, каждый глаз которых видит предметы отдельно, млекопитающие обладают бинокулярным зрением, т.е. способны смотреть на предмет обоими глазами, что позволяет определить размеры предмета и расстояние до него. Строение глаза лошади Глаз примата


    У рыб хорошо развито внутреннее ухо. У земноводных в среднем ухе содержится слуховая косточка, а на поверхности кожи заметна барабанная перепонка т.е. в связи с выходом на сушу развивается внутреннее и среднее ухо. У рептилий увеличиваетсяулитка внутреннего уха. В органах слуха млекопитающих кроме среднего и внутреннего уха, имеется наружный слуховой проход и ушная раковина, т.е. орган слуха состоит из трёх частей. т.е. орган слуха состоит из трёх частей. Орган слуха человека

    Нейроны

    Нейроглия

    Нейроглиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объема ЦНС, но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции.

    Сравнительная нейроанатомия

    Типы нервных систем

    Существует несколько типов организации нервной системы, представленные у различных систематических групп животных.

    • Диффузная нервная система - представлена у кишечнополостных , можно считать ее прообразом ретикулярной структуры ЦНС позвоночных. Нервные клетки равномерно распределены по всему телу животного, и при раздражении одной даётся генерализованный ответ - реагирует все тело.
    • Диффузно-узловая нервная система - некоторые нервные клетки собираются в ганглии (нервные узлы). Такой тип нервной системы представлен у плоских червей .
    • Узловая нервная система, или сложная ганглионарная система - представлена у полихет . Выделяется сегментация нервной системы, ганглии более дифференцированы, клетки в них специализированы и обслуживают отдельные органы. У моллюсков ганглии огромны, и настолько хорошо развиты, что позволяют вырабатывать условные рефлексы . У головоногих моллюсков же сложное объединение специализированных ганглиев с развитыми связями между ними образуют «протомозг». У членистоногих в головном отделе несколько крупных ганглиев объединяются. Это объединение может также формировать слои - то есть быть прообразом кортиколизации («грибовидные тела»).
    • Трубчатая нервная система (нервная трубка) характерна для хордовых .

    Нервная система у различных животных

    Нервная система у кишечнополостных

    Впервые нервная система появляется у кишечнополостных . У полипов она представляет собой примитивную субэпителиальную нервную сеть (нервный плексус ), оплетающую всё тело животного и состоящую из нейронов (звёздчатые клетки ), соединённых друг с другом отростками (диффузная нервная система ), особенно плотные их сплетения образуются на оральном и аборальном полюсах тела. Раздражение вызывает быстрое проведение возбуждения по телу гидры и приводит к сокращению всего тела, в связи с сокращением эпителиально-мускульных клеток эктодермы и одновременно их расслаблением в энтодерме . Медузы устроены сложнее полипов, их нервная система начинает обособляться. Помимо подкожного нервного сплетения у них имеются ганглии по краю зонтика , соединённые отростками нервных клеток в нервное кольцо , от которого инервируются мышечные волокна паруса и ропалии - структуры, содержащие различные органы чувств (диффузно-узловая нервная система ). Бо́льшая централизация наблюдается у сцифомедуз и, особенно, кубомедуз , их 8 ганглиев, соответствующие 8 ропалиям, достигают достаточно крупных размеров - это первый пример образования значительных нервных узлов.

    Нервная система у первичноротых

    Спинной мозг
    • периферическую нервную систему

    К периферической нервной системе относят черепномозговые нервы , спинномозговые нервы и нервные сплетения

    Функциональное деление

    • Автономная (вегетативная) нервная система
      • Метасимпатический отдел вегетативной нервной системы (энтеральная нервная система)

    Онтогенез

    Модели

    В настоящий момент нет единого положения о развитии нервной системе в онтогенезе. Основная проблема заключается в оценке уровня детерминированности (предопределения) в развитии тканей из зародышевых клеток. Наиболее перспективными моделями являются мозаичная модель и регуляционная модель . Ни та, ни другая не может в полной мере объяснить развитие нервной системы.

    • Мозаичная модель предполагает полное детерминирование судьбы отдельной клетки на протяжении всего онтогенеза .
    • Регуляционная модель предполагает случайное и изменяемое развитие отдельных клеток, при детерминированности только нейрального направления (то есть любая клетка определенной группы клеток может стать какой угодно в пределах возможности развития для этой группы клеток).

    Для беспозвоночных мозаичная модель практически безупречна - степень детерминации их бластомеров очень высока. Но для позвоночных все гораздо сложнее. Некая роль детерминации и здесь несомненна. Уже на шестнадцатиклеточной стадии развития бластулы позвоночных можно с достаточной долей уверенности сказать, какой бластомер не является предшественником определенного органа.

    Маркус Джакобсон в 1985 году ввел клональную модель развития головного мозга (близка к регуляционной). Он предположил, что детерминирована судьба отдельных групп клеток, представляющих собой потомство отдельного бластомера, то есть, "клонов" этого бластомера. Муди и Такасаки (независимо) развили эту модель в 1987. Построена карта 32-клеточной стадии развития бластулы. Например, установлено, что потомки бластомера D2 (вегетативный полюс) всегда встречаются в продолговатом мозге . С другой стороны, потомки почти всех бластомеров анимального полюса не имеют выраженной детерминации. У разных организмов одного вида они могут встречаться или не встречаться в определенных отделах головного мозга.

    Регуляционные механизмы

    Выяснено, что развитие каждого бластомера зависит от наличия и концентрации специфических веществ - паракринных факторов, которые выделяются другими бластомерами. Например в опыте in vitro с апикальной частью бластулы, оказалось, что при отсутсвии активина (паракринного фактора вегетативного полюса), клетки развиваются в обычный эпидермис, а при его наличии, в зависимости от концентрации, по возрастанию ее: клетки мезенхимы, гладкомышечные, клетки хорды или клетки сердечной мышцы.

    Все вещества, определяющие поведение и судьбу клеток, их воспринимающих, в зависимости от дозы (концентрации) морфогена в данном участке многоклеточного зародыша называются морфогенами .

    Одни клетки секретируют во внеклеточное пространство растворимые активные молекулы (морфогены), убывающие от своего источника по градиенту концентрации.

    Та группа клеток, чьё расположение и назначение задано в пределах одних и тех же границ (с помощью морфогенов), называется морфогенетическим полем . Судьба самого морфогенетического поля жестко определена. Каждое конкретное морфогенетическое поле отвечает за образование конкретного органа, даже если эту группу клеток трансплантировать в различные части зародыша. Судьбы же отдельных клеток внутри поля зафиксированы не столь жестко, так что они могут в известных пределах менять назначение, восполняя функции утраченных полем клеток. Концепция морфогенетического поля является более общим понятием, по отношению к нервной системе она отвечает регуляторной модели.

    С понятиями морфоген и морфогенетическое поле тесно связано понятие эмбриональной индукции . Это, также общее для всех систем организма явление, впервые было показано на развитии нервной трубки.

    Развитие

    Нервная система образуется из эктодермы - наружного из трёх зародышевых листков. Между клетками мезодермы и эктодермы начинается паракринное взаимодействие, то есть в мезодерме вырабатывается специальное вещество - фактор роста нейронов, которое передаётся в эктодерму. Под влиянием фактора роста нейронов часть эктодермальных клеток превращается в нейроэпиталиальные клетки, причём образование нейроэпителиальных клеток происходит очень быстро - со скорость 250000 штук в минуту. Этот процесс называется нейрональной индукцией (частный случай эмбриональной индукции).

    В результате образуется нервная пластинка, которая состоит из одинаковых клеток. Из неё образуются нервные валики, а из них - нервная трубка, которая обособляется из эктодермы (конкретно за образование нервной трубки и нервного гребня отвечает смена типов кадгерина, молекулы клеточной адгезии), уходя под неё. Механизм нейруляции несколько различается у низших и высших позвоночных. Замыкается нервная трубка не одновременно по всей длине. Прежде всего замыкание происходит в средней части, затем этот процесс распространяется к заднему и переднему её концам. На концах трубки сохраняется два незамкнутых участка - передний и задний нейропоры.

    Затем происходит процесс дифференциации нейроэпителиальных клеток на нейробласты и глиобласты. Глиобласты дают начало астроцитам, олигодендроцитам и эпиндимным клеткам. Нейробласты становятся нейронами . Далее происходит процесс миграции - нейроны переносятся туда, где они будут выполнять свою функцию. За счёт конуса роста нейрон перетекает, подобно амёбе, а путь ему указывают отростки глиальных клеток. Следующий этап - агрегация (слияние однотипных нейронов, например, участвующих в образовании мозжечка, таламуса и пр). Нейроны узнают друг друга благодаря поверхностным лигандам - специальным молекулам , имеющимся на их мембранах . Объединившись, нейроны выстраиваются в необходимом для данной структуры порядке.

    После этого идёт созревание нервной системы. Из конуса роста нейрона вырастает аксон, от тела отрастают дендриты.

    Затем происходит фасцикуляция - объединение однотипных аксонов (образование нервов). Последний этап - запрограммированная гибель тех нервных клеток, в которых произошёл сбой за время формирования нервной системы (около 8 % клеток посылают свой аксон не туда, куда нужно).

    Нейронауки

    Современная наука о нервной системе объединяет многие научные дисциплины: наряду с классическими нейроанатомией, неврологией и нейрофизиологией , важный вклад в изучение нервной системы вносят молекулярная биология и генетика , химия , кибернетика и ряд других наук. Такой междисциплинарный подход к изучению нервной системы нашел отражение в термине – нейронаука (neuroscience). В русскоязычной научной литературе в качестве синонима часто используется термин «нейробиология». Одной из основных целей нейронауки является понимание процессов, происходящих как на уровне отдельных нейронов, так и нейронных сетей, итогом которых являются различные психические процессы: мышление, эмоции, сознание. В соответствие с этой задачей изучение нервной системы ведется на разных уровнях организации, начиная с молекулярного и заканчивая изучением сознания, творческих способностей и социального поведения.

    Профессиональные сообщества и журналы

    Общество нейронаук (SfN, the Society for Neuroscience) – крупнейшая некомерческая международная организация, объединяющая более 38 тыс. ученых и врачей, занимающихся изучением мозга и нервной системы. Общество было основано в 1969 году, штаб-квартира находится в Вашингтоне. Основной его целью является обмен научной информацией между учеными. С этой целью ежегодно проводится международная конференция в различных городах США и издается Журнал нейронаук (The Journal of Neuroscience) . Общество ведет просветительскую и образовательную работу.

    Федерация европейских обществ нейронаук (FENS, the Federation of European Neuroscience Societies) объединяет большое количество профессиональных обществ из европейских стран, в том числе и из России. Федерация была основана в 1998 году и является партнером американского общества нейронаук (SfN). Федерация проводит международную конференцию в разных европейских городах раз в 2 года и выпускает Европейский журнал нейронаук (European Journal of Neuroscience)

    Вскрытая нервная система Хэрриет Коул

    • Американка Хэрриет Коул (1853-1888) умерла в возрасте 35 лет от туберкулёза и завещала своё тело науке. Тогда патологоанатом Руфус Б. Универ из медицинского колледжа Ханеманна в Филадельфии потратил 5 месяцев на то, чтобы аккуратно извлечь, разложить и закрепить нервы Хэрриет. Ему удалось даже сохранить глазные яблоки , оставшиеся прикреплёнными к глазным нервам.

    Примечания

    Ссылки

    • Анатомия человека: Неврология - учение о нервной системе

    См. также


    Нервная система

    3.1. Происхождение и функции нервной системы.

    Нервная система у всех животных имеет эктодермальное происхождение. Она выполняет следующие функции:

    Связь организма с окружающей средой (восприятие, передача раздражения и ответная реакция на раздражение);

    Связь всех органов и систем органов в единое целое;

    Нервная система лежит в основе формирования высшей нервной деятельности.

    3.2. Эволюция нервной системы в ряду беспозвоночных животных.

    Впервые нервная система появилась у кишечнополостных и имела диффузный или сетчатый тип нервной системы, т.е. нервная система представляет собой сеть нервных клеток, распределенных по всему телу и связанных между собой тонкими отростками. Типичное строение она имеет у гидры, но уже у медуз и полипов появляются скопления нервных клеток в определенных местах (около рта, по краям зонтика), эти скопления нервных клеток являются предшественниками органов чувств.

    Дальше эволюция нервной системы идет по пути концентрации нервных клеток в определенных местах тела, т.е. по пути образования нервных узлов (ганглиев). Эти узлы в первую очередь возникают там, где находятся клетки воспринимающие раздражение из окружающей среды. Так при радиальной симметрии возникает радиальный тип нервной системы, а при билатеральной симметрии концентрация нервных узлов происходит на переднем конце тела. От головных узлов отходят парные нервные стволы, идущие вдоль тела. Такой тип нервной системы называется ганглиозно-стволовым.

    Типичное строение этот тип нервной системы имеет у плоских червей, т.е. в переднем конце тела имеются парные ганглии, от которых отходят вперед нервные волокна и органы чувств, и нервные стволы, идущие вдоль тела.

    У круглых червей головные ганглии сливаются в окологлоточное нервное кольцо, от которого также идут нервные стволы вдоль тела.

    У кольчатых червей образуется нервная цепочка, т.е. в каждом членике формируются самостоятельные парные нервные узлы. Все они соединяются как продольными, так и поперечными тяжами. В результате нервная система приобретает строение, напоминающие лестницу. Часто обе цепочки сближаются, соединяясь по средней части тела в непарную брюшную нервную цепочку.

    У членистоногих такой же тип нервной систем, но количество нервных узлов уменьшается, а размер их увеличивается, особенно в головном или в головогрудном отделе, т.е. идет процесс цефализации.

    У моллюсков нервная система представлена узлами в разных отделах тела, соединенных между собой тяжами и отходящими от узлов нервами. У брюхоногих моллюсков имеются педальный, церебральный и плеврально-висцеральные узлы; у двустворчатых – педальный и плеврально-висцеральный; у головоногих – плеврально-висцеральный и церебральный нервные узлы. Вокруг глотки у головоногих моллюсков наблюдается скопление нервной ткани.

    3.3. Эволюция нервной системы у хордовых животных.

    Нервная система у хордовых представлена нервной трубкой , которая дифференцируется на головной и спинной мозг.

    У низших хордовых нервная трубка имеет вид полой трубки (невроцель) с отходящими от трубки нервами. У ланцетника в головном отделе образуется небольшое расширение – зачаток головного мозга. Это расширение получило название желудочка.

    У высших хордовых на переднем конце нервной трубки образуется три вздутия: передний, средний и задний пузыри. Из первого мозгового пузыря образуется в дальнейшем передний и промежуточный мозг, из среднего – средний, из заднего – мозжечок и продолговатый мозг, переходящий в спинной.

    У всех классов позвоночных животных мозг состоит из 5 отделов (передний, промежуточный, средний, задний и продолговатый), но степень их развития неодинакова у животных разных классов.

    Так у круглоротых все отделы головного мозга расположены друг за другом в горизонтальной плоскости. Продолговатый мозг непосредственно переходит в спинной с центральным каналом в нутрии.

    У рыб головной мозг более дифференцирован по сравнению с круглоротыми. Объем переднего мозга увеличен, особенно у двоякодышащих рыб, но передний мозг еще не разделен на полушария и функционально служит высшим обонятельным центром. Крыша переднего мозга тонкая, она состоит только из эпителиальных клеток и не содержит нервной ткани. В промежуточном мозге, с которым связан эпифиз и гипофиз, расположен гипоталамус, являющийся центром эндокринной системы. Наиболее развитым у рыб является средний мозг. Хорошо выражены в нем зрительные доли. В области среднего мозга имеется изгиб, характерный для всех вышестоящих позвоночных. Кроме того средний мозг является анализирующим центром. Мозжечок, входящий в состав заднего мозга, развит хорошо в связи со сложностью движения у рыб. Он представляет собой центр координации движения, его размер варьирует в зависимости от активности движения разных видов рыб. Продолговатый мозг обеспечивает связь высших отделов головной мозга со спинным и содержит центры дыхания и кровообращения.

    Из головного мозга рыб выходит 10 пар черепно-мозговых нервов.

    Такой тип мозга, в котором высшим центром интеграции является средний мозг, называется ихтиопсидным.

    У амфибий нервная система по своему строению близка к нервной системе двоякодышащих рыб, но отличается значительным развитием и полным разделением парных вытянутых полушарий, а также слабым развитием мозжечка, что обусловлено малой подвижностью амфибий и однообразием их движений. Но у амфибий появилась крыша переднего мозга, называемая первичным мозговым сводом – архипаллиумом. Число черепно-мозговых нервов, как и у рыб, десять. И тип мозга тот же, т.е. ихтиопсидный.

    Таким образом у всех анамний (круглоротых, рыб и амфибий) ихтиопсидный тип головного мозга.

    В строении головного мозга рептилий, относящихся к высшим позвоночным, т.е. к амниотам, отчетливо выражены черты прогрессивной организации. Значительное преобладание над другими отделами мозга получают полушария переднего мозга. У их основания расположены крупные скопления нервных клеток – полосатые тела. На латеральной и медиальной сторонах каждого полушария появляются островки старой коры – архикортекс. Размеры среднего мозга сокращаются, и он теряет значение ведущего центра. Анализирующим центром становится дно переднего мозга, т.е. полосатые тела. Такой тип мозга называется зауропсидный или стриарным . Мозжечок увеличен в размерах в связи с многообразием движений пресмыкающихся. Продолговатый мозг образует резкий изгиб, характерный для всех амниот. Из головного мозга выходит 12 пар черепно-мозговых нервов.

    Такой же тип мозга характерен и для птиц, но с некоторыми особенностями. Полушария переднего мозга относительно большие. обонятельные доли у птиц развиты слабо, что указывает на роль обоняния в жизни птиц. В противоположность этому средний мозг представлен крупными зрительными долями. Хорошо развит мозжечок, из головного мозга выходит 12 пар нервов.

    Головной мозг у млекопитающих достигает максимального развития. Полушария настолько велики, что покрывают средний мозг и мозжечок. Особо развита кора больших полушарий, площадь ее увеличена за счет извилин и борозд. Кора имеет очень сложное строение и называется новой корой – неокортекс. Появляется вторичный мозговой свод – неопаллиум. Спереди от полушарий расположены крупные обонятельные доли. Промежуточный мозг, как и у других классов, включает эпифиз, гипофиз и гипоталамус. Средний мозг относительно мал, он состоит из четырех бугров – четыреххолмия. Передняя кора связана со зрительным анализатором, задняя – со слуховым. Наряду с передним мозгом сильно прогрессирует мозжечок. Из мозга выходит 12 пар черепно-мозговых нервов. Анализирующим центром является кора больших полушарий. Такой тип мозга называется маммальным .

    3.4. Аномалии и пороки развития нервной системы у человека.

    1. Ацефалия - отсутствие головного мозга, свода, черепа и лицевого скелета; это нарушение связано с недоразвитием переднего отдела нервной трубки и сочетается с дефектами спинного мозга, костей и внутренних органов.

    2. Анэнцефалия - отсутствие больших полушарий и крыши черепа при недоразвитии ствола мозга и сочетается с другими пороками разви­тия. Эта патология обусловлена незакрытием (дизрафия) головной части нервной трубки. При этом не развиваются кости крыши черепа, а кости основания черепа обнаруживают различные аномалии. Анэнце­фалия не совместима с жизнью, средняя частота 1/1500, при чем чаще у женских плодов.

    3. Ателэнцефалия – остановка развития (гетерохрония) передней части нервной трубки на стадии трех пузырей. В результате большие полушария и подкорковые ядра не формируются.

    4. Прозэнцефалия – конечный мозг делится продольной бороздой, но в глубине оба полушария остаются связанными друг с другом.

    5. Голопрозэнцефалия – конечный мозг не делится на полушария и имеет вид полусферы с единой полостью (желудочком).

    6. Алобарная прозэнцефалия – разделение конечного мозга только в задней части, а лобные доли остаются неразделенными.

    7. Аплазия или гипоплазия мозолистого тела – полное или частичное отсутствие сложной комиссуры мозга, т.е. мозолистого тела.

    8. Гидроэнцефалия - атрофия больших полушарий в сочетании с гидроцефалией.

    9. Агирия - полное отсутствие борозд и извилин (гладкий мозг) больших полушарий.

    10. Микрогирия - уменьшение числа и объема борозд.

    11. Врожденная гидроцефалия - преграждение части желудочковой системы мозга и ее выходов, она вызвана первичным нарушением развития нервной системы.

    12. Spina bifida - дефект замыкания и обособления от кожной эктодермы спинального отдела нервной трубки. Иногда эта аномалия сопровождается дипломиелией, при которой спинной мозг расщеплен на известном протяжении на две части, каждая со своим центральным карманом.

    13. Иниэнцефалия - редкая аномалия, несовместимая с жизнью, встречает­ся чаще у плодов женского пола. Это грубая аномалия затылка и головного мозга. Головы повернута так, что лицо обращено кверху. Дорсально скальп продолжается в кожу люмбодорсальной или сакраль­ной области.